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Abstract 

Background: Lower respiratory tract infections are among the main causes of death. Although there are many res‑
piratory viruses, diagnostic efforts are focused mainly on influenza. The Respiratory Viruses Network (RespVir) collects 
infection data, primarily from German university hospitals, for a high diversity of infections by respiratory pathogens. 
In this study, we computationally analysed a subset of the RespVir database, covering 217,150 samples tested for 17 
different viral pathogens in the time span from 2010 to 2019.

Methods: We calculated the prevalence of 17 respiratory viruses, analysed their seasonality patterns using informa‑
tion‑theoretic measures and agglomerative clustering, and analysed their propensity for dual infection using a new 
metric dubbed average coinfection exclusion score (ACES).

Results: After initial data pre‑processing, we retained 206,814 samples, corresponding to 1,408,657 performed tests. 
We found that Influenza viruses were reported for almost the half of all infections and that they exhibited the highest 
degree of seasonality. Coinfections of viruses are frequent; the most prevalent coinfection was rhinovirus/bocavirus 
and most of the virus pairs had a positive ACES indicating a tendency to exclude each other regarding infection.

Conclusions: The analysis of respiratory viruses dynamics in monoinfection and coinfection contributes to the 
prevention, diagnostic, treatment, and development of new therapeutics. Data obtained from multiplex testing is 
fundamental for this analysis and should be prioritized over single pathogen testing.
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Background
The current COVID-19 pandemic prominently dem-
onstrates the serious threat posed by respiratory infec-
tions, not only for the health of individuals, but also for 

the stability of modern society, in general. While SARS-
CoV-2 infections are currently extensively recorded 
and analysed, future studies must encompass the full 
breadth of respiratory viruses as has been done in the 
past. Even before the pandemic, lower track respira-
tory infections were among the main causes of death 
in children and adults [1, 2]. Influenza infection killed 
between 250,000 and 500,000 people annually, 152,000 
deaths were reported in Europe in the 2017–2018 season 
[3]. In Germany, during the 2018–2019 season, 182,000 
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influenza-positive tests were confirmed, including 40,000 
from inpatients [4].

In 2009 the Respiratory Viruses Network (RespVir 
www. clini cal- virol ogy. net) was founded as an initiative 
of a Clinical Virology group within the German Virology 
Society (GfV). The purpose of RespVir is to record res-
piratory infections in an online database [5], providing 
clinicians with up-to-date information about circulating 
pathogens. The RespVir database contains mainly reg-
istries from inpatients data reported by 47 laboratories 
from university hospitals and a few private. These insti-
tutions are located primarily in Germany, Austria, and 
Switzerland, collecting data from central Europe. Over 
12  years, RespVir has analysed more than 280,000 sam-
ples with respect to 25 respiratory pathogens (17 viruses 
and 8 bacteria). Among these years RespVir had obtained 
data on causal agents of respiratory infections.

RespVir includes records of samples from all patients 
with respiratory symptoms, sent in by clinicians request-
ing a diagnosis. Independent of the diagnostic hypothesis 
of the clinician, each sample was tested in a multiplex 
manner covering a maximum of 17 respiratory viruses, 
depending on test availability of each laboratory.

In this study, our aims were (i) to describe the preva-
lence and seasonal variation (seasonality) for each patho-
gen, (ii) to assess the prevalence of coinfections and (iii) 
to determine the rate of exclusion or affinity for pairwise 
coinfections.

After filtering registries with incomplete data and a 
post-hoc data quality control. To accomplish our objec-
tives, we performed the analysis in a subset of the RespVir 
database including 17 different viral pathogens covering 
the time span from 2010 to 2019.

We observed that 48.64% of all reported respira-
tory infections are caused by influenza virus. We found 
four general seasonality patterns. Each of the 17 viruses 
belongs to one of these patterns. Stratification across 
years shows biennial seasonality patterns for some 
viruses, indicating infection peaks every other season. 
We further observed that coinfections do not occur sta-
tistically independently, but that for most virus pairs 
coinfection is far less frequent than expected by chance.

Methods
Samples and data collection
Since November 2009, the RespVir network (Fig.  1) has 
collected multiplex test records for 17 virus infections 
from patients that showed respiratory infection symp-
toms. The records stem from various 47 sites, accord-
ing to the sites’ test availability. The tests used by some 
sites do not differentiate between certain virus types or 
subtypes: (i) FLUA-generic, which cannot distinguish 
between influenza A H1N1 and H3N2, (ii) HPIV-generic, 

which cannot differentiate between parainfluenzas 1, 
2, 3 or 4, (iii) HCoV-generic which cannot differentiate 
between the human coronaviruses HCoV-OC43, HCoV-
NL63, HCoV-229E, and HCoV-HKU1, and (iv) RV/EV 
which does not differentiate between rhinovirus and 
enterovirus (Table 1). Each RespVir member site submit-
ted a file that includes the date of sampling, the tests per-
formed and their results to a data base manager, who fed 
the data to the database.

Table  1 Prevalence of Circulating Viruses. The table 
describes the 21 tests to detect 17 respiratory viruses, 
indicating the name of the test performed, the abbrevia-
tion for this study. The table also shows the number of 
tests performed, tests with negatives outcome and tests 
with positive outcome of each specific test type. The pro-
portion indicates the percentage of all tests in each cat-
egory (tested and positives). The percentage indicates the 
negativity and positivity percentage of each test type

Database pre‑processing
The database required a pre-processing of the data. 
This process consisted in 1) filtering all incomplete 
data records before further analysis, and 2) a post-hoc 
curation.

After manual inspection of the data records, we found 
that most of the sites reported coinfection rates below 
0.01 of any virus pairs. There were few sites (up to 4 out 
of 47, depending on the analysed virus pairs) report-
ing coinfection rates above 0.01. Due to the possibil-
ity of typographic errors and to avoid overestimation of 
the coinfection rates, we analysed only coinfections for 
each virus pairs reported below 0.01 threshold per site. 
Of note, this threshold also did not significantly affect the 
results.

After the pre-processing we split the database in two 
for the analysis. The first part of the analysis was per-
formed on data records from monoinfections. Therefore, 
we filtered the data records for monoinfection. The sec-
ond analysis was coinfections. For the coinfection analy-
sis we took the records from samples tested for multiple 
viruses and exclusively evaluated coinfections with two 
viruses.

Seasonality profiles
We computed the seasonality profile of a virus by strati-
fying the number of positive tests from 2010 to 2019 by 
month and normalizing these month-specific infection 
counts. To quantify the degree of the seasonality of each 
virus, we computed the Kullback–Leibler divergence 
(KLD) of the seasonality profile to a uniform distribution 
[6]. Hence, a value of zero corresponds to uniform preva-
lence over the year, i.e., no seasonal variation. To com-
pare the seasonality profiles of the 17 pathogens among 
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each other, we computed the Jensen-Shannon divergence 
(JSD) [7] and applied agglomerative clustering with aver-
age linkage.

We also computed year-specific seasonality profiles for 
each year from 2010 to 2019. We clustered these profiles 
according to their JSD to compare the seasonality profiles 
over different years. In addition, we repeated the year-
specific analysis using the positivity percentage instead of 
the absolute counts of positive tests.

Coinfections prevalence and virus pair relations
For studying coinfections, we considered the 17 viruses 
corresponding to 21 tests including the non-differenti-
ating tests (FLUA-generic, HPIV-generic, RV/EV and 
HCoV-generic). While theoretically 210 combinations of 
the 21 tests are possible, we excluded combinations of 
non-differentiating tests with their more specific coun-
terparts, such as FLUA(H3N2) combined with FLUA-
generic. Finally, 197 valid combinations remained.

For assessing the tendency of each virus pair to 
exclude each other or coinfect the patient, we created 

a coinfection exclusion score (CES), see Supplementary 
material, Sect. 1.1, for the precise definition.

To exclude bias due to seasonal effects, we carried out 
this procedure for the entire data set stratified by months 
and averaged the resulting values over the statistically 
significant CES per virus pairs and months (Supplemen-
tary material, Sect.  1.2), yielding the average coinfec-
tion exclusion score (ACES). The CES and ACES scores 
assume a value of 1 if coinfections are ten times less likely 
than expected by chance and a value of -1 if they are ten 
times more likely.

Results
Database pre‑processing
From 2010 to 2019, RespVir database registered 217,150 
samples. After the initial filtering of the records with 
incomplete data, we retained 213,131 (98.14%) sample 
records.

To the monoinfection analysis, we selected samples 
with one or no positively tested pathogen. Regard-
ing coinfections we selected all samples tested for at 

Fig. 1 Distribution of RespVir Network. The figure shows a European map with the location of the 47 laboratory members of RespVir Network. 
These laboratories are located in the following countries: Germany, Austria, Switzerland, Netherlands, and Spain
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least two pathogens. To filter out sample records that 
are likely erroneous, for the coinfection analysis, we 
performed an additional post-hoc curation by setting 
a coinfection rate threshold of 0.01, for each of the 
virus pair per site. We discarded all coinfection patient 
records that yielded confections rates above this coin-
fection rate threshold.

After all filters were applied to the data base, we 
retained 206,814 sample records, of which 126,808 
(61.31%) were monoinfections, 6781 (3.27%) coinfec-
tions, and 72,335 (34.97%) negatives. The majority of the 
samples, 26.69%, belonged to patients in ages between 
0 < 6  years (26.69%), followed by patients between 
45 < 65  years (23.96%) (Table  2). The retained samples 
correspond to 1,408,657 tests performed. For coinfection, 
we analysed 7,790,879 tests results combinations corre-
sponding to the 197 senseful viral pairs (Supplementary 
table S1).

Table  2 The table shows the age distribution and per-
centage of samples per age group of retained samples 
after filtering the database

Infections prevalence
The 17 different respiratory viruses were not tested 
equally frequently. For example, while the 30.15% of the 

Table 1 Prevalence of Circulating Viruses

Prevalence of Circulating Viruses

Tests Used for Viral Infection Diagnostic Tested Negatives Positives

tested virus Abbreviation Number Proportion Number Percentage Number Percentage Proportion

Influenza A (H3N2) FLUA(H3N2) 93,848 6.66% 81,711 87.07% 12,137 12.93% 7.93%

Influenza A (H1N1) FLUA(H1N1) 65,468 4.65% 60,602 92.57% 4,866 7.43% 3.18%

Non‑differentiated Influenza A (H1N1 and 
H3N2)

FLUA‑generic 96,711 6.87% 64,907 67.11% 31,804 32.89% 20.79%

Influenza B FLUB 168,628 11.97% 143,013 84.81% 25,615 15.19% 16.74%

Parainfluenza 1 HPIV‑1 77,011 5.47% 75,848 98.49% 1,163 1.51% 0.76%

Parainfluenza 2 HPIV‑2 76,406 5.42% 75,431 98.72% 975 1.28% 0.64%

Parainfluenza 3 HPIV‑3 77,981 5.54% 73,380 94.10% 4,601 5.90% 3.01%

Parainfluenza 4 HPIV‑4 45,825 3.25% 44,978 98.15% 847 1.85% 0.55%

Non‑differentiated Parainfluenza (1,2,3, 
and 4)

HPIV‑generic 21,949 1.56% 20,882 95.14% 1,067 4.86% 0.70%

Metapneumovirus HMPV 86,107 6.11% 80,858 93.90% 5,249 6.10% 3.43%

Respiratory Syncytial Virus HRSV 97,976 6.96% 78,015 79.63% 19,961 20.37% 13.05%

Rhinovirus RV 74,061 5.26% 53,150 71.77% 20,911 28.23% 13.67%

Enterovirus EV 63,444 4.50% 59,377 93.59% 4,067 6.41% 2.66%

Non‑differentiated Picornaviruses (Rhinovi‑
rus and Enterovirus)

RV/EV 8,604 0.61% 6,823 79.30% 1,781 20.70% 1.16%

Adenovirus HAdV 80,593 5.72% 73,611 91.34% 6,982 8.66% 4.56%

Coronavirus OC43 HCoV‑OC43 63,523 4.51% 60,818 95.74% 2,705 4.26% 1.77%

Coronavirus E229 HCoV‑E229 59,369 4.21% 58,132 97.92% 1,237 2.08% 0.81%

Coronavirus NL63 HCoV‑NL63 61,455 4.36% 59,922 97.51% 1,533 2.49% 1.00%

Coronavirus HKU1 HCoV‑HKU1 17,013 1.21% 16,812 98.82% 201 1.18% 0.13%

Non‑differentiated Coronaviruses (OC43, 
E229, NL63 and HKU1)

HCoV‑generic 7,628 0.54% 6,909 90.57% 719 9.43% 0.47%

Bocavirus HBoV 65,057 4.62% 60,474 92.96% 4,583 7.04% 3.00%

Total 1,408,657 100% 1,255,653 153,004 100%

Table 2 Age distribution by age goup

Age group # of samples Percentage

0 < 6 55,199 26.69%

6 < 13 14,684 7.1%

13 < 19 10,382 5.02%

19 < 46 44,486 21.51%

46 < 65 49,553 23.96%

65 + 32,511 15.72%

Total 209,814 100%
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samples were tested only for the Orthomyxoviridae fam-
ily, consisting of with FLUA (18.18%) and FLUB (11.97%). 
Members of the Coronaviridae family were tested sig-
nificantly less frequently, with 4.51% HCoV-OC43, 4.36% 
HCoV-NL63, 4.21% HCoV-229E, 1.21% HCoV-HKU1, 
and 0.54% HCoV-generic (Table 1).

Influenza viruses represent 48.64% of all positive 
reports, of which 31.90% pertain to FLUA, and 16.74% 
to FLUB. The remaining 51.36% cover the remaining 14 
viruses.

FLUA-generic test is the test with the highest positiv-
ity percentage (32.89%), followed by rhinovirus (28.23%), 
RV/EV (20.70%), human respiratory syncytial virus 
(HRSV) (20.37%), and influenza B (15.19%). The tests for 
coronaviruses and parainfluenza families were the ones 
with the lowest positivity percentage (Table 1).

Seasonal variations of viruses circulation
To study the seasonality of the respiratory viruses, we 
excluded the four tests that do not differentiate virus sub-
types. The influenza viruses (FLUB, FLUA(H3N2), and 
FLUA(H1N1) exhibit the highest degree of seasonality, 
whereas RV, HPIV-3, enterovirus, and adenovirus exhibit 
the lowest (Fig. 2a).

We determined the similarity of the seasonality pro-
files among the 17 viruses and carried out hierarchical 
clustering with average linkage. After applying a cut-
off of 0.05 to the dendrogram, we obtained four groups 
(Fig.  2b), each of which we assigned an interpretive 
label: (1) “Winter Peak” comprises FLUB, FLUA(H3N2) 
and FLUA(H1N1)), (2) “Winter/Spring Peak” comprises 
HRSV, HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-
OC43, HMPV, and HBoV, (3) “Autumn Peak” comprises 
HPIV-1, HPIV-2, and HPIV-4, and (4) “Perennial” 
comprises HAdV, EV, HPIV-3, RV (Fig. 2c and Supple-
mentary figure S1). We repeated this analysis using the 
positivity percentage, obtaining similar results. (Sup-
plementary figure S2).

To analyse seasonality variation of each virus among 
the 10 years of the study, we stratified the frequency of 
positive tests for each pathogen by year and calculated 
their year-specific seasonality profiles (Supplementary 
figure S3). We found that HCoV-OC43, exhibiting a 
clear biennial pattern, that is, high infection numbers 
at the end of even and beginning of odd years (Fig. 3a). 
To obtain a more concise representation, we applied 
hierarchical clustering with average linkage to the 
ten profiles of each virus (Supplementary figure S4). 
We found that the year-specific seasonality profiles of 

Fig. 2 Seasonality Profile of the Respiratory Viruses. The figure shows the seasonality profile of the 17 respiratory viruses studied. a) Degree of 
seasonality of each virus calculated by Kullback–Leibler divergence, where zero indicates no seasonality (see Methods, seasonality profile). b) 
Average linkage clustering of the 17 viruses according to their seasonality profile. c) The seasonal four groups according to the similarities of the 17 
viruses, the figure shows the seasonal profile of one virus per group and the group name
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HCoV-OC43 resolve into two groups that contain the 
odd and even years respectively (Fig.  3b), and a simi-
lar biennial variation becomes apparent for HPIV-1, 
HPIV-3, and HRSV (Supplementary figure S4). For 
FLUA(H3N2) (Fig.  3c) and FLUA(H1N1) (Fig.  3d) a 
biennial pattern can be presumed, but it is not consist-
ently true all years.

Coinfections prevalence and virus pair relations
To describe the coinfection prevalence, we analysed 
7,790,879 tests results for the 197 virus test pairs.

We found that RV/HBoV, RV/HAdV, HRSV/HBoV, 
HRSV/HAdV and HRSV/HCoV-OC43 coinfections 
were the most prevalent coinfections, and together with 
HRSV/RV had the highest positivity percentage. For 19 
out of the 197 studied virus pairs, we did not find any 
coinfection case (Supplementary table S1).

For 73 of the 197 virus pairs, we obtained a coinfec-
tion exclusion score (CES), which implies a statistically 
significant dependence of both test results, for at least 
one month. The great majority of test pairs yield a posi-
tive ACES (Average coinfection exclusion score), indicat-
ing coinfection exclusion. The pair FLUA(H1N1)/FLUB 
shows the highest coinfection exclusion (ACES = 1.67), 
followed by FLUA(H3N2)/FLUB (ACES = 1.39), 
FLUB/HPIV-3 (ACES = 1.34), FLUA-generic/HMPV 
(ACES = 1.30), and FLUA(H1N1)/RV and FLUA(H3N2)/
FLUA(H1N1) with an ACES = 1.29 for both cases. We 
found negative ACES values in only five test pairs, indi-
cating affinity of the viral pairs like FLUA(H3N2)/HPIV-4 
with ACES = -1.39 (Fig. 4 and Supplementary table S2).

Discussion
In the present study, we present data from the respira-
tory pathogens network that has been in place since 
2009, based on multicenter, wide-spectrum collec-
tion rather than collection  of data  based on narrowly 
defined selection criteria. In principle it could be taken 
as a limitation due to the different clinical criteria by 
applied by physicians as they request specific diag-
nostic test. The multiplex test approach in our analy-
sis  reduces a possible bias because the samples are 
tested not only for a single suspected pathogen, but for 
the 17 respiratory viruses of the multiplex panel.

One disadvantage of this strategy is a lack of clinical 
historal data. For example, we cannot determine the 
influence of vaccination rate in our cohort. Neverthe-
less, the broad coverage (nationwide) of our data allows 
to assume that the vaccination rate is representative in 
our cohort.

Filtering and post-hoc curation was required. This 
was partly necessary due to non-curated data enter-
ing the database. To overcome this disadvantage, it is 
important to use quality control mechanisms during 
data collection in the future to reject the collection of 
false data mainly regarding coinfections.

We analysed the frequency of 17 respiratory patho-
gens with respect to monoinfections and coinfections, 
their seasonal variation, and the affinity to coinfect with 
other viruses, spanning 10  years (2010–2019). To our 
knowledge, this study reports on the largest volume of 
data of its kind [4, 8–15]. Nevertheless, another limita-
tion in terms of global health is that our samples come 
mainly from Germany, Austria and Switzerland, these 

Fig. 3 Annual variation of seasonality. The figure shows the annual variation of seasonality and the biennial pattern discovered. a) Biennial pattern 
of HCoV‑OC43 exhibiting high infection numbers at the end of even and beginning of odd years, but low infection numbers at the end of odd 
and beginning of even years. b) Hierarchical clustering with average linkage of the annual variation of seasonality of HCoV‑OC43. c) Hierarchical 
clustering with average linkage of the annual variation of seasonality of FLUA(H3N2). d) Hierarchical clustering with average linkage of the annual 
variation of seasonality of FLUA(H1N1)
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samples constitute a good basis to analyze the Central 
Europe (continental) region and therefor the the results 
about saisonality  should not be extrapolated to other 
hemisphere regions, nor even to north Europe, Spain or 
United kingdom.

Our results confirm previous reports that influenza A 
viruses, HRSV, and RV were detected most frequently in 
our cohort [4, 13, 14, 16, 17]. Nevertheless, almost one 
quarter (24.65%) of the infections are caused by other 
respiratory viruses. Although influenza tests are the most 
frequently performed assays, 51.36% of all positive tests 
derived from other respiratory viruses. This supports the 
importance of testing for multiple pathogens for diagnos-
tic purposes [18–20]. A disadvantage of our approach is 
that relies on routine diagnostic test, therefore influenza 
typing is restricted to Influenza A (H1N1 and H3N2) 
and no further data on the subtypes of influenza B  are 
given, Consequently, no detailed specific description of 
the viruses’ behaviour or more specific coinfection rela-
tions can be evaluated.

To detect patterns of seasonal variation worldwide, cor-
responding worldwide and long-term studies are needed 

[18, 19]. Our study is robust and covers a long-term 
period for the central European area. This study allows us 
to confirm previously reported seasonal patterns [18–22], 
but also to propose a new seasonal classification of the 
studied viruses into four groups. Furthermore, we found 
a typical seasonal pattern repeated every other years for 
HPIV-1, HPIV-3, HMPV, HRSV, and HCoV-OC43; also, 
for FLUA(H3N2) except for the  years 2010 and 2018 as 
well as for FLUA(H1N1) except for years 2010 and 2012, 
respectively. This confirms the constancy of the biennial 
patterns except for years near to a pandemic event due to 
new viruses appearance.

The SARS-CoV-2 outbreak has raised questions regard-
ing the seasonal pattern of this virus. Studies on seasonal 
patterns of endogenous viruses could help to solve these 
questions. We found a slight difference in the seasonal 
profile within the coronaviruses (Figure S1). SARS-
CoV-2 belongs to beta-coronaviruses which season usu-
ally  starts in November–December and has its peak in 
December-January. Thus, a similar seasonality could be 
expected for SARS-CoV-2 in the future.

Fig. 4 Interaction strength between the 17 virus pairs regarding coinfection. The figure shows the 17 studied viruses linked by lines. Orange lines 
indicate an exclusion interaction while green lines an affinity interaction. The thickness of the lines indicates the strength of the interaction
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Coinfection modifies the natural history of dis-
eases  caused by single infections. Thus, deeper under-
standing of coinfections, especially the exclusion 
mechanisms could help the development of antivirals 
[23]. Only a few large-scale data analyses on virus-virus 
interactions exist, in contrast to numerous studies on 
bacterial coinfections and virus-bacteria studies [24–28]. 
We characterized the coinfection prevalence and the 
interactions between 17 different viruses and analysed 
7,790,879 tests combinations, within the ten year obser-
vation period. To our knowledge, our study provides the 
analysis of virus-virus interaction with the largest diver-
sity of respiratory viruses, the longest surveillance period, 
and the largest number of tests performed.

As expected, the most prevalent coinfection virus 
pairs and the highest positivity percentage (Table  S1) 
had also  a high monoinfection prevalence and a sea-
sonal overlap. To compare the propensity of a virus pair 
to coinfect, we introduced a coinfection exclusion score 
(CES). To exclude bias due to seasonal effects, we calcu-
lated an average coinfection exclusion score (ACES).

One of the most relevant studies of virus-virus interac-
tion has been performed by Nickbakhsh et. al. [29], who 
analysed 44,230 respiratory illness cases tested for 11 
viruses over nine years and classified the viral pairs inter-
actions. Our data confirm a strong exclusion of any of 
the influenza A strains (H1N1 or H3N2) to coinfect with 
rhinovirus. This exclusion has been confirmed also in an 
animal model [30]. Our data also confirm an exclusion 
between FLUB and HAdV. In contrary to Nickbakhsh 
et  al. [29], our data suggest strong exclusion for HRSV 
and HMPV coinfection and no significant interaction 
between HPIV-2 with HPIV-3. Nickbakhsh et al. [29] did 
not report any other interaction, while our data shows 
the strongest exclusion for FLUA(H1N1) and FLUB as 
well as for FLUA(H3N2) and FLUB. For the other virus 
pairs the numbers are too small to test for significance. 
So, further studies are needed to get more insight into 
the frequency ant role of virus co-infections.

Conclusions
The deeper understanding on virus dynamics will con-
tribute to improve diagnostics,  the prevention  of infec-
tion, and potentially, the  development of therapies for 
viral infections. We show the advantages of multiplex 
testing to identify the causative agent for a respiratory 
disease. Our approach shows the usefulness for collect-
ing data with such real world data bases.  Analysis of 
data on (co-) infections, seasonality, and interactions of 
viruses can be performed much faster compared to pro-
spective clinical studies.
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