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Abstract
Background Respiratory viral diseases are one of the greatest challenges facing our healthcare system, with them 
being one of the main causes of death. This has been demonstrated once again by the impact of the SARS-CoV-2 
pandemic in recent years. We study the impact of the SARS-CoV-2 pandemic on the prevalence of respiratory viruses 
by analysing a subset of the Clinical Virology network database, covering 2,216,198 samples tested for 18 different viral 
pathogens in the time span from 2010 to 2024.

Methods We calculated the prevalence of 17 respiratory viruses before and after onset of the SARS-CoV-2 pandemic 
and compared the degree of seasonality shift with a newly developed a metric dubbed seasonal disruption index. In 
addition, we compared coinfection statistics prior to and after the pandemic onset, and also studied the correlation of 
infection counts with non-pharmaceutical interventions in the time frame from early 2020 to end of 2022.

Results We found that the viral pathogens show a varying degree of seasonality disruption. It is largest among those 
that are known to show a highly seasonal behavior, namely Influenza and RSV, the latter having the highest seasonal 
disruption index. Most perennial viruses continued to appear throughout the year. Coinfections occurred before and 
after the pandemic; patterns before and after pandemic onset are surprisingly similar. The occurrence of most viruses 
is nonlinearly correlated with the degree of non-pharmaceutical interventions.

Conclusion The SARS-CoV-2 pandemic had a considerable impact on the occurrence and seasonality of other 
respiratory viruses. While nearly all seasonality patterns were initially disrupted due to the heavy non-pharmaceutical 
interventions, viruses are regaining their pre-pandemic seasonality.

Keywords Respiratory viruses, Seasonality, Non-pharmaceutical interventions, SARS-CoV-2 pandemic, COVID-19, 
Coinfections
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Background
Respiratory viral illnesses are one of the key challenges 
facing our healthcare systems. Most prominently per-
ceived in the population, each year, an estimated 5% to 
15% of all people are affected by respiratory tract infec-
tions caused by influenza viruses alone  [1]. While some 
outbreaks such as MERS (Middle East respiratory syn-
drome coronavirus) in 2012 or SARS (severe acute respi-
ratory syndrome) in 2003 remained fairly localized with 
a limited number of casualties, others such as the Span-
ish flu (1918-1920) and, more recently, the SARS-CoV-2 
pandemic, had a profound impact on human develop-
ment throughout the world [2–4]. In response, consider-
able efforts are taken to prepare for future pandemics and 
to limit their societal and economic burdens [5, 6].

One aspect of preparedness is the continuous observa-
tion of known respiratory virus dynamics to enable quick 
responses to local and global outbreaks to protect at-risk 
groups  [7, 8]. Prior long-term studies revealed predict-
able seasonality patterns for such viral diseases  [9–11], 
for example, enabling preparations of the new influenza 
vaccines [7, 12]. It is also important to assess virus-virus 
interactions, both synergistic and antagonistic, as co-
infected patients might suffer from worse health out-
comes [2, 10, 13].

Several studies suggest that previously identified 
long-term seasonalities before the pandemic have been 
distorted, leading to missing seasons or shifts in sea-
sonalities during and after the pandemic [14–16]. Such 
investigations into the altered behavior of respiratory 
viral strains have been made in several countries [17, 18], 
including Germany  [14, 19–21]. An extensively studied 
example is the respiratory syncytial virus (RSV), with 
multiple studies observing an entire missing season [15, 
22, 23]. This has been correlated with non-pharmaceu-
ticcal interventions (NPIs), implemented to prevent the 
SARS-CoV-2 pandemic completely overloading national 
healthcare systems. The reduction in transmissibility 
hoped to achieve for SARS-CoV-2 also affected the trans-
mission of other previously analyzed respiratory patho-
gens  [15–17, 19, 23, 24]. There are also a few studies 
regarding coinfections between SARS-CoV-2 and other 
pathogens [25, 26].

Although many insights regarding the impact of the 
SARS-CoV-2 pandemic on infection dynamics have 
been gained, there are still gaps in the literature. Most 
studies only consider a sub-population  [14, 19] or 
small region  [17, 20] rather than considering the entire 
population of a country due to a lack of data on a large 
scale. Many studies are also limited by considering only 
one  [16, 23, 24] or a small number  [17, 18, 20, 22] of 
viruses, and thus also lack or do not even attempt a sys-
tematic comparison. Furthermore, many studies were 
published relatively early in the pandemic [14, 15, 17, 18, 

21, 22]. Hence, they only focus on a short period com-
pared to the previously identified dynamic patterns and 
do not permit to assess whether any seasonal shifts and 
newly identified patterns will remain stable or eventually 
return to the state prior to the pandemic. Finally, coinfec-
tion studies in the literature often involve SARS-CoV-2 
and influenza [25], widely neglecting interactions among 
other viruses.

In this article, we attempt to fill some of the gaps by 
addressing the aforementioned limitations. We build 
upon our prior study on the data from the clinical-virol-
ogy.net [9] in order to cover a large number of contribut-
ing sites in Germany and infection counts for 18 different 
viruses. These data span the period before, during, and 
after the pandemic, up until April 2024. As a result, 
four full years after the start of the pandemic are avail-
able for a comparative analysis against the prepandemic 
timeframe. In order to quantify seasonal shifts and other 
disruptions of viral dynamics during the pandemic and, 
most importantly, compare the behavior of different 
viruses, we propose a seasonality disruption index (SDI). 
We further study the correlation of infection counts with 
NPIs, also with the primary aim of comparing viruses. In 
addition, we study possible changes in coinfection pat-
terns among all pairs of viruses before and after the start 
of the pandemic.

Methods
This section contains a description of the data, followed 
by a general outline of our analysis methodology, and a 
description of our newly developed method for the quan-
tification of seasonality disruption.

Data collection and preprocessing
Since November 2009, the clinical-virology.net, for-
merly known as RespVir network, has collected multiplex 
test records for 17 virus infections from patients who 
showed respiratory infection symptoms. Since January 
2020, SARS-CoV-2 has been included in the list of tested 
viruses. The records stem from up to 47 sites, although 
the tested viruses and covered time spans differ greatly 
across sites. We used the clinical virology network (CVN) 
database updated until April 2024, using the data from 
January 2010 onwards to be consistent with our previous 
work [9], and carried out the following data cleaning and 
preprocessing steps.

First we removed all biologically implausible data 
entries. There are 5,201 (of 2,222,843) data points that 
showed positive results against more than four viruses. 
Additionally, one site had 1444 positive HBoV test results 
in early 2018 (January–April), with a nearly 100% posi-
tivity rate. Both cases are likely caused by incorrect data 
entry, for instance by swapping positive and negative 
labels, so we excluded the affected data points entirely. 
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Furthermore one site marked each of 211 positive test 
results for Influenza A subtype H1N1 also as positive for 
subtype H3N2. We excluded these counts for the coinfec-
tion analysis specifically.

Second, the tests used by some sites do not differentiate 
between certain virus types or subtypes, such as FLUA-
generic, which cannot distinguish between influenza A 
H1N1 and H3N2. In this study, we excluded these com-
bitests and retained only the 18 tests against single virus 
types. This eliminates 6,771 data points that comprise 
only combitests.

Third, we filtered out 97,710 data points from non-
German test sites, as the one objective of the project was 
to correlate infection counts with non-pharmaceutical 
interventions, which needs to be done on the country 
level. For all countries aside from Germany, samples sizes 
in the CVN database are too small to draw statistically 
significant conclusions.

An overview and a quantitative description of the 
final data set after preprocessing, that is all virus names, 
abbreviations, absolute and relative infection counts, is 
included in the supplementary material. Unsurprisingly, 
the number of tests and positive results for SARS-CoV-2 
dwarfs those of the remaining viruses, amounting for 
more than all others combined. But also the percentage 
of positive tests results is with more than 24% consider-
ably higher than for all other viruses, where positive per-
centages range between 1% and 16%.

Analysis methodology
In our analysis, we first inspected the absolute infection 
and relative infection counts for each virus aside from 
SARS-CoV-2 in a time-series fashion for the period of 
January 2010 to April 2024. Relative counts are defined 
as the absolute number of positive test results divided by 
the number of tests conducted.

Subsequently, we investigated how the pandemic 
affected virus dynamics and analysed alterations in sea-
sonal outbreak behaviour. For this purpose, we developed 
a statistical measure, the so-called disruption statistics, 
to quantify the disruption of seasonal patterns. It states 
the difference between the observed infections and the 
expected infections based on the median from the past 
ten years. More details and a mathematical description 
is provided in the following Quantification of season-
ality disruption  section. Using the disruption statistics 
and identical parametrization, we identified disruption 
profiles, further enabling a clustering of the viruses 
according to their profile in a dendogram. All of the 
aforementioned measures allowed an objective compari-
son of seasonal disruption across viruses.

We further studied the association of infection counts 
and NPIs. For this purpose, we included SARS-CoV-2 
and quantified NPIs using the Stringency Index from 

the Oxford Covid-19 Government Response Tracker 
(OxCGRT)  [27]. This index combines several factors 
such as school closings and restrictions on public gather-
ings. Since the stringency index is available only for the 
time period January 2020 – December 2022, all analy-
ses regarding NPIs are limited to that time period. Our 
analysis was performed on a monthly aggregation which 
is why we averaged the daily stringency index values for 
each month to suit our format.

Lastly, we investigated coinfections among all 18 
viruses before and after the start of the pandemic. Due 
to the small sample sizes post 2020, it was not possible 
to repeat the analysis as in a previous study  [9], where 
we analyzed virus pairs with a score that shows statisti-
cally significant increase or decrease in coinfections com-
pared to what would be expected by chance. Instead in 
the present study we solely compared coinfection counts 
before and after the start of the pandemic.

Quantification of seasonality disruption
To examine how the pandemic affected virus dynam-
ics and seasonal outbreak behavior, we define statistical 
measures to quantify the disruption of seasonal virus pat-
terns in the following. For an arbitrary virus, let nid(y,m) 
denote the absolute number of infections in month m of 
year y, whereby the subscript

 id(y, m) = 12 ∗ (y − 2010) + m

returns the global index of the month in the time period 
under consideration, i.e., how many months have passed 
since the beginning of 2010. We calculate smoothed 
infection counts with a window size of w as

 
ñi = 1

2w + 1

i+w∑
j=i−w

nj

for i > m. Let d denote the number of past seasons we 
wish to consider and α denote a small pseudocount to 
avoid infinity in cases of zero infections in a particular 
month. We define the disruption statistics

 
DSi = log2

(
ñi + α

median(ñi−12d, . . . , ñi−12) + α

)

This statistics quantifies how much more/less frequent 
the infection counts in month i were compared to an 
expected value, which is based on the median of the past 
d seasons as the baseline. If not explicitly specified other-
wise, we use w = 2, α = 1, and d = 10 for all studies.

Let us consider a time period between months a and 
b (with b > a). We call the vector of disruption statistics 
values in the chosen time period disruption profile. The 
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seasonality disruption index (SDI) quantifies the total 
disruption of infection seasonality between months a and 
b by

 
SDI(a, b) =

√√√√ 1
b − a

b∑
i=a

DS2
i

which is essentially a root mean squared deviation of the 
disruption profile to a straight line at zero (no seasonality 
disruption). The key advantage of this metric over previ-
ously used Kullback-Leibler divergence based quantifica-
tion of seasonality  [9] is that it allows quantification of 
seasonality disruption for arbitrary time spans and not 
only whole years.

Further, we considered the disruption statistics for each 
virus in the given time period, e.g., (DSa, . . . , DSb) as 
feature vector and applied agglomerative clustering with 
average linkage using the feature vectors of all viruses as 
data points and squared Euclidean distance.

Results
This Result section first describe infection trajectories 
over time for a few selected viruses, motivating the need 
for a unified quantitative evaluation, followed by large-
scale analyses for all viruses regarding seasonality disrup-
tion, correlation with non-pharmaceutical interventions, 
and coinfections.

Infection counts over time
We first inspected the absolute infection and relative 
infection counts for each virus in the time period January 
2010 to April 2024. Figure 1 displays four typical exam-
ples, identical plots for the remaining viruses are shown 
in the supplementary material. Despite only using Ger-
man data here, all plots are consistent up to 2019 with the 
previous analysis of the CVN data [9]. The extended time 
period also gives insights on the impact of the SARS-
CoV-2 pandemic on the infection dynamics.

As a first example, we use the human respiratory syn-
cytial virus (RSV), which can cause severe infections 
in premature newborn, young children, elderly and 

Fig. 1 Positive tests for RSV, Influenza A H3N2 (FLUA(H3N2)), HAdV, and HMPV aggregated by month in the time period January 2010 until March 2024. 
The red line displays relative counts, i.e., positive tests divided by the number of tests. The vertical dashed orange line marks the start of the SARS-CoV-2 
pandemic. See supplement for other viruses
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immunocompromised  [28, 29]. These groups are candi-
dates for either passive immunisation (children) for vac-
cination (elderly, immunocompromised).

We observed a clear seasonal occurrence pattern with 
annual peaks in January and February, being disrupted at 
the onset of the pandemic (Fig. 1) [15, 16]. A peak in early 
2021, expected based on the typical seasonal pattern in 
the years before, is missing. The following peak emerged 
in fall 2021 and the peaks of the subsequent two seasons 
appeared in December instead of January/February. The 
RSV occurrence pattern recovered from the pandemic 
disruption with respect to frequency, however, the sea-
sonal peak is still shifted by two months.

Prior to the pandemic, the seasonality pattern of influ-
enza A subtype H3N2 remained consistent over the 
years regarding onset and duration. Yet, the size of the 
individual waves differed. Upon the pandemic influenza 
A H3N2 could not be observed for nearly two seasons 
before re-appearing at the end of 2022 in a uni-modal 
wave. Until the end of the study period, no return to the 
prepandemic seasonal patterns could be seen.

Prepandemically, the human adenovirus (HAdV) was 
known to belong to the perennial group showing little 
preference for a particular season but rather occurred in 
a fluctuating fashion throughout the year. In contrast to 
other viruses, almost no disruption of absolute infection 
numbers could be observed upon the SARS-CoV-2 pan-
demic. The relative HAdV frequency (regarding number 
of tests) decreased in recent years. Anyhow, this trend 
has started before the pandemic.

Human Metapneumovirus (HMPV) is a respiratory 
pathogen, phylogenetically related to RSV and Parain-
fluenza 1-4, which is not as intensively observed as Influ-
enza, SARS-CoV-2 or RSV. It is a severe burden not only 
in children but also in adults, especially those over 65 
years of age [30–34]. Infections with HMPV are detected 
and reported within our respiratory pathogens net-
work, CVN, since the beginning of our activity [9]. More 
recently, vaccines have been developed and have now 
entered clinical studies [35, 36]. Here, we describe the re-
emergence of HMPV after the pandemic.

Prior to the pandemic, HMPV showed infection peaks 
in winter (December–January), although there is at 
least one season (2011) in which low infection counts 
were detected and therefore a typical peak can hardly 
be identified. There is a notable peak in absolute infec-
tion counts located at the pandemic onset in early 2020 
with an absence in of infections in 2021. The sparsity and 
sporadic occurrence after the start of the pandemic are in 
line with prepandemic patterns and may be explained by 
natural variation inherent to the virus. Notably, relative 
infection counts remained remarkably low after the start 
of the pandemic.

Comparison of seasonality disruption
Prepandemic seasonality trends differed to a large degree 
among the considered viruses as described in our previ-
ous work [9]. In order to obtain a quantitative measure 
for the disruption of the seasonality patterns, we applied 
the seasonality disruption index (Quantification of sea-
sonality disruption section). We exemplified the index by 
RSV, the detailed plots for the other viruses are shown in 
the supplementary material.

Figure 2A displays smoothed absolute infection counts 
for the entire time period. It also contains the disrup-
tion profile after pandemic onset (March 2020 to March 
2024). The disruption profile fluctuates in the range of -6 
in early 2021 to +5 in late 2021. Thus, it aligns with the 
presence and absence of expected and unexpected peaks.

We used the disruption profiles as feature vectors and 
applied hierarchical clustering. The resulting dendro-
gram with each disruption profile plotted adjacent to the 
corresponding leaf in the tree is shown in Fig. 2B. Addi-
tionally, the plot also displays the seasonality disruption 
index (SDI) for each virus, which is the root mean square 
deviation of the disruption profile from a null vector.

Figure 2B reveals that RSV shows the highest SDI and 
is also least similar to any other virus in the selection in 
terms of disruption profile. RSV frequency was unexpect-
edly low upon the onset of the pandemic (Fig. 2A). Nev-
ertheless, RSV occurrence strongly increased in late 2021 
after a period of little detection. It should be noted that 
HPMV shows both a different original seasonal trend and 
a different disruption, despite being genetically closely 
related to RSV and causing similar symptoms [37].

While some viruses such as influenza A (FLUA(H3N2) 
and FLUA(H1N1)) also exhibit a fluctuating disruption 
profile and thus a relatively high SDI, others, such as the 
non-enveloped viruses (Rhinovirus(V), EV, HAdV) less 
little seasonal disruption, which might be explained by 
them being perennial [9], not exhibiting a strong season-
ality to begin with. In general, viruses that exhibited a 
stronger seasonality pre-pandemically also have a higher 
SDI, but the correlation is not perfect: Human parainflu-
enza 3 (HPIV-3), for instance, shows a relatively high SDI 
simply due to the absence of infection counts early in the 
pandemic. The dendrogram resulting from clustering dis-
ruption profiles resembles the clustering according to the 
pre-pandemic seasonal patterns [9], but not perfectly.

Infection counts vs non-pharmaceutical interventions
Figure  3A displays an overlay of the stringency index 
and infection counts for the examples of RSV and 
FLUA(H3N2); similar plots for each individual virus 
under consideration are shown in the supplement.

For RSV, it is remarkable that after the pandemic onset 
in March 2020, the infection counts remain low as long 
as the stringency index is above a value of 60. Once 
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restrictions were loosened (late 2021), the RSV wave 
appeared. A small increase in the stringency index then 
coincided with the end of aforementioned peak. Finally, 
in late 2022, when all NPI related public health mea-
sures aside from public information campaigns were ter-
minated, the infection counts for RSV rose once again. 

Influenza A(H3N2) disappeared with rising stringency 
index in early 2020 and reappeared at the end of 2022. 
Unlike RSV, influenza A(H3N2) did not re-emerge within 
the pandemic period.

We calculated the Spearman (rank) correlation between 
the stringency index and infection counts for each virus 

Fig. 3 Infections and NPIs. A Overlay of infection counts and stringency index for influenza A H3N2 and RSV. B (Negative) Spearman correlation of strin-
gency index and absolute infection counts for the time period from March 2020 to December 2022 for each virus under consideration. An equivalent plot 
additionally including January and February 2020 and Pearson correlation plots for both timeframes are shown in the supplement

 

Fig. 2 Quantifying seasonality disruptions. A Smoothed absolute infection counts for RSV in the time period 2010–2024 (black line). The orange line 
displays the disruption statistics, i.e. the difference between the observed infections and the expected infections based on the median from the past 
10 years. B The 17 viruses are hierarchically clustered according to their disruption statistics profile. The middle plots show the disruption statistics from 
2020-2024 in the range from -7 to 7, where the dashed line represents value zero. The barplot shows for each virus the aggregated disruption, i.e., the sum 
of the absolute disruption statistics over all months
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and noted the corresponding p-values. The results in 
Fig.  3B show that many viruses, such as the RSV and 
FLUA(H3N2), exhibit a moderate yet significant negative 
correlation between infection counts and NPIs. However, 
this is not true for all considered viruses. Most nota-
bly, influenza B and A H1N1 have correlations of nearly 
zero, which is due to very small absolute infection num-
bers in the considered time period. As the SARS-CoV-2 
pandemic reached Germany in March 2020 the first two 
months of 2020 were excluded for this analysis. If they 
were taken into account as well, correlations would be 
higher (Supplement). We also studied Pearson correla-
tions among stringency index and infection counts (Sup-
plement); here the resulting values are smaller in absolute 
numbers, which indicates that the relationship between 
NPIs and infection counts is to some degree nonlinear. 
We additionally repeated all correlation analyses with rel-
ative instead of absolute infection counts (Supplement). 
The results remain almost identical.

We also studied the relationship between the disrup-
tion statistics and NPIs (Supplement); here the cor-
relations are even stronger, and there is little difference 
between Pearson and Spearman correlation.

Coinfections
We inspected coinfections among viruses for the pro-
vided study period and compared coinfection counts 
before (January 2010 to Feburary 2020) and after the 
start of the pandemic (March 2020 to April 2024) in a 
heatmap (Fig. 4). The general pattern appears fairly simi-
lar. Frequent coinfections, such as RSV and RV, persist. 
Most changes pertain human Bocavirus (HBoV) where 
coinfections became more frequent, in particular with 
RSV, HadV, and HMPV. Also HMPV/RV coinfections 
are occurring frequently. The only notable coinfections 

of SARS-CoV-2 reported in the CNV database are with 
RSV, RV, and both influenza A subtypes. The numbers 
are tiny in relation to the SARS-CoV-2 monoinfections, 
though (Supplement).

Discussion
In this study, we performed a long-term analysis of respi-
ratory viruses in Germany. We quantified seasonal shifts 
and compared the behaviour of 17 different viruses using 
self-developed seasonality disruption statistics.

All viruses showed a lower frequency during the pan-
demic. The reemergence of the viruses was different. We 
showed that for viruses that exhibit a specific seasonal 
outbreak pattern the pandemic had severe impact on the 
timing and the size of the outbreak waves. RSV consti-
tutes a prime example as the disruption led to a missing 
wave in the 2020/2021 season followed by a reemergence 
in fall 2021. This could be interpreted either as a very 
delayed 2021 infection wave or an advanced 2022 wave. 
This is a unique behaviour among the considered viruses, 
further supported by its distinct disruption profile being 
least similar to any other virus. Therefore, it is plausible 
that it displays the highest SDI value.

Papenburg and Boivin [37] described different seasonal 
trends of RSV and HMPV, despite their genetic close-
ness and causing similar symptoms. Our study empha-
sizes this by not only showing different prepandemic 
seasonal trends but also various disruption statistics 
upon the COVID-19 pandemic onset. Furthermore, our 
results are in line with Terliesner et al.[14] who suggest 
that non-seasonal viruses (Rhinovirus/Enterovirus, Ade-
novirus) remained comparatively more stable upon the 
COVID-19 outbreak, while others showed out-of-season 
resurgences. The same holds true for the also closely phy-
logenetically related Parainfluenza viruses. RSV, HMPV 

Fig. 4 Heatmaps of coinfection counts prior to the pandemic (January 2010 – February 2020) and post pandemic start (March 2020 – April 2024)

 



Page 8 of 11Eggeling et al. BMC Public Health         (2025) 25:2654 

and Parainfluenza belong to the family of Paramyxovi-
ruses but clearly show a different biological behavior as 
demonstrated here.

Additionally, enveloped viruses such as RSV, 
FLUA(H3N2) and FLUA(H1N1) exhibit a fluctuating dis-
ruption profile and thus a relatively high SDI, whereas 
non-enveloped viruses, e.g. Rhinovirus or Adenovirus, 
show none to less seasonal behaviour and thus they show 
relatively little seasonal disruption. This is in line with Oh 
et al.  [21], who suggests that the viral structure (envel-
oped versus non-enveloped viruses) might influence 
viruses dynamics during and after the SARS-CoV-2 pre-
vention measures.

For Influenza A and B the disruption was also very 
prominent, as the disruption was even longer as com-
pared to RSV and not directly related to the non-phar-
maceutical-intervention index. There seems to be a 
relation as the more stringent the seasonality is, the lon-
ger the disruption period and the more difficult it is for 
the virus to get back into the pre-pandemic seasonal-
ity. Due to the vulnerability of the envelope of influenza 
viruses, they are very vulnerable to environmental influ-
ences. If this or other reasons like the reproduction num-
ber determine the differences in seasonality can only be 
speculated as we do not have such information collected 
in our network.

There is indeed a difference between the spreading of 
Influenza A H1N1, A H3N2 and the B variants (Yamagata 
and Victoria line). Different epidemiology between the 
different influenza variants is clearly visible and is verified 
by other networks like the Arbeitsgemeinschaft Influenza 
(AGI, www.RKI.de). Before the SARS-CoV-2 pandemic, 
different years sometimes had different epidemics show-
ing different variants of influenza A and B. As we do not 
observe Influenza B Yamagata line derived virus strains 
after the pandemic, authorities discuss to exclude influ-
enza B Yamagata line like virus vaccine from the recom-
mended vaccine recommendation.

We were able to show statistically significant negative 
correlations between the case numbers and the imple-
mentation of non-pharmaceutical interventions for 
some viruses. The partially nonlinear correlation could 
be explained by an exponential increase in the infection 
counts and indeed Influenza A (H3N2), which has the 
largest difference between linear and rank correlation, 
has also the sharpest infection peak. Given this observa-
tion the nearly linear correlation between disruption sta-
tistics and NPIs is also plausible, as the former is defined 
on the logarithmic scale.

Aside from SARS-CoV-2, RSV is noted as the pri-
mary example for negative correlation between infection 
counts and NPIs. Yorsaeng et al. [18] could not identify a 
similar significant increase after implementation of NPIs 
as others have identified. However, not all viruses show 

this strong correlation. For some, such as Influenza B 
and Influenza A, subtype H1N1, it is due to virtually zero 
infections in the time period under consideration.

We analyzed a composite NPI index with disease inci-
dence. Although individual NPIs, such as mask-wearing, 
social distancing, or travel restrictions, may vary in their 
impact, they are often implemented together. As a result, 
NPIs tend to be highly correlated and may exert syner-
gistic or confounding effects, making it challenging to 
isolate the specific contribution of any single interven-
tion  [22]. Different studies aimed at disentangling these 
effects. Takeuchi et al. [24] used multiple regression anal-
ysis identifying associations between high mask use and 
high social distancing in 3 and 2 seasons with influenza. 
In contrast to the individual NPIs within the stringency 
index, they opted for more granular data for mask use 
and mobility data. Billard et al.  [16] identified associa-
tions between school closures and stay-at-home orders in 
the RSV season using linear mixed models, though effect 
sizes were small.

We observed that coinfections occurred between dif-
ferent viruses and that this was relatively little affected 
by the pandemic. Most increases in coinfections are 
related to HBoV. It is discussed controversially whether 
HBoV is a mere bystander  [38], a true pathogen in its 
own right [39] or coinfection with HBoV might lead to a 
more severe course of disease compared to single patho-
gen infections. We have no detailed clinical data in our 
network to either support clinical significance of HBOV 
or to prove the opposite, though. Other coinfection 
increases pertain RSV, which can be a consequence of the 
strong RSV wave in fall 2021.

Although our study is fairly comprehensive in terms 
of the long time period, number of viruses, and contrib-
uting hospitals, it has certain limitations. The heteroge-
neous nature of the CVN data may introduce biases as 
outlined in the following paragraphs.

Testing policies are not constant across time and loca-
tion. As a consequence, neither absolute nor relative 
infection counts are free of bias. The former may over-
estimate infections and lead to false positive peaks in the 
infection dynamics with increased testing. Conversely, 
the latter may underestimate infections and lead to the 
missing of peaks in the infection dynamic in that situa-
tion. Since both forms of bias are possibly problematic, 
we display long-term trends for both statistics. We used 
absolute infection counts as basis for our main analysis, 
since our motivation was to study the possible absence of 
expected infection peaks post-pandemic onset, for which 
underestimation of infections is a greater concern than 
overestimation.

The analysed data set stemmed from the clinical virol-
ogy network mainly comprising hospital data. Thus, the 
claims made in this study refers to this specific setting 
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only. Tanislav et al. [40] analysed data from general prac-
titioners and specialists and have shown a decrease in 
respiratory and gastrointestinal disease occurrence dur-
ing the pandemic. However, no stratification by virus 
was performed. Further insight into the viral dynamics 
regarding surveillance detected by general practitioners 
would be interesting as a complementing comparison 
to the presented results. Similarly, there might be age-
related differences in susceptibility or testing bias within 
the hospital setting.

A further limitation of our study include that the data 
are restricted to Germany. This may limit the general-
izability of our findings. Viral dynamics and the effec-
tiveness of public health measures differ significantly 
between countries due to variations in health care sys-
tems, political decisions, and societal behaviors. As such, 
our results may not be fully applicable to settings outside 
the German context. Moreover, pandemic response strat-
egies, including testing regimes, mobility restrictions, 
and vaccination rollouts, varied widely across countries 
and over time. These differences make it difficult to draw 
direct comparisons or apply our findings to other regions 
without conducting localized analyses.

The disruption statistics and the seasonal disruption 
index are novel metrics introduced specifically for this 
study. One limitation is their dependence on the three 
hyperparameters w, d, and α. Changing one or more of 
these values drastically will alter the results. While we 
consider the precise values used to provide a reasonable 
tradeoff between capturing as much information as pos-
sible while also eliminating noise on our CVN data, this 
does not necessarily generalize to other data sets. A sys-
tematic study of the effect of these parameters across dif-
ferent data sets could thus be a topic for future research.

Conclusion
We provide a basis for data collection and a deeper 
understanding of virus dynamics and how non-pharma-
ceutical interventions affect the seasonality and occur-
rence of viruses is essential for preparing for upcoming 
seasons. Furthermore, this information is crucial for 
health policy, as it helps refine or develop new strate-
gies to combat and predict seasonal peaks, as well as to 
improve diagnostics. Consequently, the challenges of 
new epidemics and even pandemics can be met.
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